Rank Growth of Elliptic Curves in Non-Abelian Extensions
نویسندگان
چکیده
منابع مشابه
On the rank of certain parametrized elliptic curves
In this paper the family of elliptic curves over Q given by the equation Ep :Y2 = (X - p)3 + X3 + (X + p)3 where p is a prime number, is studied. Itis shown that the maximal rank of the elliptic curves is at most 3 and someconditions under which we have rank(Ep(Q)) = 0 or rank(Ep(Q)) = 1 orrank(Ep(Q))≥2 are given.
متن کاملNon-Abelian Zeta Functions for Elliptic Curves
In this paper, new local and global non-abelian zeta functions for elliptic curves are defined using moduli spaces of semi-stable bundles. To understand them, we also introduce and study certain refined Brill-Noether locus in the moduli spaces. Examples of these new zeta functions and a justification of using only semi-stable bundles are given too. We end this paper with an appendix on the so-c...
متن کاملAverage Frobenius Distributions for Elliptic Curves over Abelian Extensions
Let E be an elliptic curve defined over an abelian number field K of degree m. For a prime ideal p of OK of good reduction we consider E over the finite field OK/p and let ap(E) be the trace of the Frobenius morphism. If E does not have complex multiplication, a generalization of the Lang-Trotter Conjecture asserts that given r, f ∈ Z with f > 0 and f | m, there exists a constant CE,r,f ≥ 0 suc...
متن کاملThe Growth of the Rank of Abelian Varieties upon Extensions
We study the growth of the rank of elliptic curves and, more generally, Abelian varieties upon extensions of number fields. First, we show that if L/K is a finite Galois extension of number fields such that Gal(L/K) does not have an index 2 subgroup and A/K is an Abelian variety, then rkA(L)− rkA(K) can never be 1. We obtain more precise results when Gal(L/K) is of odd order, alternating, SL2(F...
متن کاملElliptic Curves on Abelian Surfaces
The purpose of this paper is to present two theorems which give an overview of the set of elliptic curves lying on an abelian surface and to discuss several applications. One of these applications is a classical theorem of Biermann (1883) and Humbert (1893) on the characterization of abelian surfaces containing elliptic curves in terms of the “singular relations” of Humbert. As a by–product one...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Mathematics Research Notices
سال: 2019
ISSN: 1073-7928,1687-0247
DOI: 10.1093/imrn/rnz307